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Abstract

Cerebral palsy (CP) is the commonest cause of physical disability in children, 
but optimal rehabilitative protocols have yet to be determined, and progress 
in developing novel interventions has been slow. Neuroplasticity is no longer 
thought to be fixed in childhood, but instead develops throughout life; however, 
the best way to exploit the remodeling brain has yet to be determined. Here we 
present a novel multimodal integrative medicine protocol for the management of 
children and adolescents with CP termed Integrated Neurorehabilitation (INRA). 
The basic INRA protocol combines physical therapy, magnetostimulation, and a 
nutraceutical regimen to provide endogenous and exogenous neurorestorative 
stimuli to damaged corticospinal pathways on a background of an optimized 
neuronal microenvironment. We illustrate the protocol with the case of a 
13-year-old boy showing marked improvements in gross motor function (GMFM-
88 score 82% from 59%), speech (TOM score 3 from 0), and cognition (TOEM 
score 3 from 1) after four years of therapy. Epileptiform activity on EEG was 
reduced. We describe the protocol in full and the scientific rationale for its 
implementation. IRNA can be used alongside existing medical and rehabilitative 
regimens to promote neuroplasticity and synaptogenesis.

Keywords: Cerebral palsy; Neurorehabilitation; Neuroplasticity; Nutraceutical; 
Magnetostimulation

Introduction
Cerebral palsy (CP), the commonest cause of physical 

disability in children [1], is characterized by permanent disorders 
of the development of movement and posture [2]. CP results from 
primary brain injury before birth or during early childhood that 
results in aberrant neural connections [3]. Children with CP are 
managed using a variety of passive or active interventions that 
aim to improve movement and posture, along with secondary 
interventions to manage frequently encountered disturbances in 
sensation, perception, cognition, communication, and behavior. 
These elements of rehabilitation ideally consist of neuroscience 
evidence-based therapies for neurobehavioral impairments and 
medical management of primary neurological disorders such as 
epilepsy and spasticity. The functional deficits seen in CP have 
a wide-ranging impact on both patients and their caregivers by 
restricting many aspects of normal living including self-care, 
education, and recreation [4]. However, and despite the negative 
impact of physical impairment and secondary symptoms on 
children, optimal interventions are poorly understood. Progress 
in developing interventions has been slow, which has led to 
missed opportunities to reduce morbidity, improve the quality of 
life of both children and their carers, and to deliver cost-effective 
care [5]. 

The management of CP must, therefore, be multidisciplinary 
to achieve the best outcomes. In practicality, this means that 
CP is managed by a combination of medical, neurological, and 

rehabilitative care. For instance, tone abnormalities might be 
managed from the rehabilitative perspective with physical 
therapy, task-specific practice, functional neurostimulation, serial 
casting, and orthotic devices; from the neurological perspective 
with oral medications such as dantrolene or botulinum A toxin 
injections [6]; and from the psychological perspective through 
patient and family education and self-directed exercise [5]. 

However, there is a growing appreciation that neurological 
plasticity – the capacity to learn, reorganize, and, in particular, 
recover from injury - is not fixed in childhood but can be modified 
throughout life [7]. This raises the possibility that neuroplasticity 
can be exploited for therapeutic benefit. Activity-dependent 
plasticity takes place in the motor cortex, so intensive and 
repetitive task-specific exercises could be used to improve motor 
recovery [8], and indeed this has been shown to be the case in 
adults with stroke [9]. Task-specific therapies such as constraint-
induced movement therapy, which forces the use of a weaker 
arm [10], or exercise interventions to promote postural control 
[11] provide moderate evidence to support their use as part of 
the multidisciplinary management of CP. Furthermore, indirect 
external interventions such as transcranial magnetic stimulation 
(TMS), which excite neurotransmission to promote plasticity, have 
been shown to transiently [12] and persistently [13] improve 
motor function in adults and children with stroke. TMS has also 
been used in several studies of children and adolescents with 
cerebral palsy and is regarded as very safe [14]. 
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Complementary and alternative medicine (CAM) describes 
a diverse group of medical and health care systems, practices, 
and products that are not presently considered to be part of 
conventional medicine, where integrative medicine refers to a 
subset of CAMs in which there is a stronger evidence base for 
their use alongside conventional medicine, such as the TMS and 
physical therapy described above [15]. Although it is difficult 
to accurately determine exact figures, it has been reported that 
anywhere between 27 and 53% of adolescents and children 
with CP use CAM approaches, respectively, most commonly 
hydrotherapy, massage, hyperbaric oxygen, and osteopathy 
[16,17]. The use of nutraceuticals (a food or product with health 
benefits, or a dietary supplement) in the management of cerebral 
palsy is less well documented, but there are a few examples of 
studies examining the use of vitamin supplementation in children 
with CP [18,19], and children with CP are known to suffer from 
micronutrient deficiencies and anti-oxidant imbalances [20]. This 
prompted us to develop a new multimodal integrative medicine 
protocol for the management of children and adolescents with CP 
termed Integrated Neurorehabilitation (INRA) drawing on three 
key domains related to promoting positive neuroplasticity and 
nutrition: physical therapy, TMS, and a nutraceutical regimen. 

Methods

The basic INRA protocol

The IRNA protocol combines three modalities designed to 
promote neuroplasticity, and therefore recovery, in children 
with CP. The protocol has been selected to promote endogenous 
neuroplasticity (physical therapy), provide an exogenous stimulus 
for neuroplasticity (magnetostimulation), while maintaining 

and optimizing the neuronal milieu or microenvironment via 
nutraceutical therapy (Figure 1). The basic protocol comprises:

Physical therapy: intensive physical therapy for two hours daily 
consisting of three minutes cycles of five exercises targeting 
different parts of the body: abdominal, floor rolling, back exercises, 
sitting, and crawling. 

Brain stimulation: one hour of magnetostimulation daily using 
the Viofor JPS apparatus in active mode. The exposure was carried 
out with the M2P2 settings (intensity 6 degrees) corresponding to 
15 μT effective induction of a magnetic field.

Subcutaneous nutraceutical prescription: 

(i)	 500 mg vitamin C daily; 

(ii)	 Vitamin B complex (60 mg vitamin B1, 18 mg vitamin B6, 
250 mg vitamin B12) daily; 

(iii)	 1 vial of Cerebrum Compositum (Heel GmBH, Baden-
Baden, Germany) daily; 

(iv)	 5 ml Cerebrolysin (Ever Pharma, Unterach, Austria) twice 
a week. 

All agents were administered subcutaneously.

Oral nutraceutical prescription: 

(i)	 2 caplets of Focus Complex (Puritans Pride); 

(ii)	 One caplet of NeuroPS (Puritans Pride); 

(iii)	 One caplet of vinpocetine (Puritans Pride). 

All were administered daily.

Figure 1: A model for Integrated Neurorehabilitation (INRA). Intensive physical therapy (endogenous stimulation) and magnetostimulation 
(exogenous stimulation) promote positive neuroplasticity and synaptogenesis on the background of an optimized neuronal microenvironment due 
to the administration of nutraceuticals with anti-oxidant, pro-synaptogenic, and epigenetic effects.

http://dx.doi.org/10.15406/jnsk.2016.04.00137
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The basic protocol can be supplemented with other complementary 
approaches that have been examined in CP such as hyperbaric 
oxygen [17], functional electrical stimulation [11], acupuncture 
[21], and aromatherapy and massage [16]. However, here we 
focus on the rationale for the core components of the technique 
that are specifically designed to promote neuroplasticity.

Rationale

Physical therapy: Children with CP show deficits in anticipatory 
and reactive postural adjustments and in the sensory and motor 
components of postural control [22-24]. These deficits limit skills, 
including gait [25], reach [26], and oral motor activities such as 
eating, swallowing, and speaking [27]. A number of studies have 
reported the effects of physical/exercise therapy for children with 
CP including functional electrical stimulation, gross motor task 
training, hippotherapy, neurodevelopment therapy, progressive 
resistance exercise, reactive balance training, treadmill training, 
and trunk-targeted training (systematically reviewed in [11]). 
There is moderate evidence supporting the use of a number of 
these interventions (treadmill training, hippotherapy, trunk-
targeted training, reactive balance training, and gross motor task 
training [11]). Given the: (i) high clinical utility of gross motor 
task training, which does not require specialist or expensive 
equipment; (ii) favorable results from two randomized trials 
adopting a task-oriented, gross motor-focused approach 
(significantly reduced times for “timed up and go tests” and reach 
[28,29]); and (iii) the principle that task-specific practice for motor 
learning and functional organization (i.e., neurodevelopment) is 
greater when tasks are meaningful [30], we developed a program 
of circuits of five exercises similar to real-life tasks and designed 

to mimic how the muscles are used in everyday activities taking 
normal biomechanics, core strength (especially abdominal and 
back exercises), balance (sitting and floor rolling), and limb 
function (crawling) into account. Given the relative simplicity of 
these exercises, they are likely to be well received by children and 
be motivating, which is important since participation is important 
for improving motor activities [31]. 

Magnetostimulation: Neuroplasticity can be directly promoted 
via increases in excitatory neurotransmission and vice versa. In 
animal models, high-frequency magnetic stimulation induces 
long-term potentiation in the rat hippocampus via an excitatory 
mechanism, which is thought to promote synaptogenesis [32]. 
There have been a number of studies examining transcranial 
magnetic stimulation (TMS) in children with cerebral palsy, 
either alone or in combination with other modalities [14], most of 
which report improvements in both motor and cognitive-related 
connectivity and function [33,34], increased size and activation of 
motor areas [35], or a reduction in spasticity [36]. Traditional TMS 
uses strong magnetic fields with induction values between 0.5 
and 2 T and repetition rates near 1 Hz. However, weaker variable 
magnetic fields (1 nT – 100 mT), called magnetostimulation, 
although not yet tested in cerebral palsy has shown promise in 
the treatment of multiple sclerosis [37], Parkinson’s disease [38], 
Alzheimer’s disease [39], and depression [40]. These favorable 
results, the non-invasive methodology, safety of the procedure, 
and putative positive mechanistic effect on neuroplasticity 
prompted us to adopt this exogenous stimulation method to 
complement the endogenous promotion of neuroplasticity from 
physical therapy (Figure 2).

Figure 2: Magnetostimulation device attached to the child’s head. The intervention is non-invasive and comfortable.

http://dx.doi.org/10.15406/jnsk.2016.04.00137
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Nutraceutical regimen: As noted above, evidence and clinical 
trials supporting the use of nutraceuticals in CP are lacking. 
However, the synaptogenesis that underpins neuroplasticity 
must be supported an adequate supply of nutrients, and 
indeed multi-nutrient combinations containing, amongst other 
compounds, phospholipids and choline have been shown to 
promote locomotor recovery and reduce the size of lesions in 
animal models of spinal cord injury [41]. Furthermore, children 
with severe CP have significant differences in micronutrient levels 
(lower zinc, glutathione reductase, and superoxide dismutase 
(SOD) and higher red cell folate) than in healthy controls [20] 
and redox imbalance (such as that caused by a reduction in 
critical antioxidant enzymes such as SOD) in the neurogenic 
microenvironment might reduce neurogenesis and hence 
plasticity [42]. We therefore sought to optimize the neurogenic 
microenvironment to promote neuroplasticity with vitamin C (a 
well-known antioxidant with neurophysiological effects including 
neuronal development, maturation, and survival [43]); vitamin 
B complex (an epigenomic regulator that influences neuronal 
survival and differentiation [44]); Cerebrum compositum 
(a homeopathic preparation prescribed for mental fatigue); 
Cerebrolysin (a mixture of neuropeptides and free amino acids 
used in the treatment of stroke, neurodegenerative disease, and 
traumatic brain injury to promote neural regeneration [45]); 
Focus Complex (a proprietary blend of vitamins and minerals 
including the anti-oxidants vitamins C and E, selenium and zinc); 
NeuroPS (a phosphatidylserine supplement; phosphatidylserine 
is an integral component of the cell membrane and might 
have a protective effect against neurodegeneration [46]); and 
vinpocetine (a semi-synthetic alkaloid derived from the lesser 
periwinkle plant and thought to promote neurological recovery 
after ischemia [47] or protect against neurodegeneration [48]).

Case Report
A 13-year-old boy with cerebral palsy was referred to clinic 

with severe motor, intellectual, and speech deficits. The child was 
born 4 weeks prematurely from a twin pregnancy; his sibling 
was born (and remains) healthy. On neurological examination 
on presentation, his GCS was 15 and he had normal pupillary 
reflexes and cranial nerves. His head was normal without any 
malformations, there was no scoliosis, and his upper limbs, 
although not malformed and functional with satisfactory 
coordination and no tremor, exhibited signs of slow movement, 
delayed fine motor function, and hypertonia (2/5). He showed 
diffuse weakness of the pelvic muscles with a restricted range of 
movements. His lower limbs were not malformed, but again, there 
was hypertonia (2/5) and brisk reflexes and bilateral positive 
Babinski sign. Sensory function was normal.

His Gross Motor Function Method (GMFM-88) score on referral 
was 59% [49]. He was unable to crawl or sit independently, 
although he could maintain an upright posture and walk with 
assistance. He wore diapers since sphincter control was not 
established. He was scored as “0” for speech impairment and 
“1” for cognitive impairment, according to Therapy Outcome 
Measures for health professionals scoring [50]. His IQ was 24 at 
presentation. His mother provided consent for treatment and the 
publication of these findings.

An EEG has taken prior to therapy showed basal cerebral 
activity in the slow alpha range (12-18 Hz) with diffuse theta 

activity across the frontal regions. There was no pronounced 
blocking, asymmetry, or spontaneous paroxysms. After photic 
stimulation and hyperventilation, small clusters of high-voltage, 
short spikes were observed above the frontotemporal regions 
bilaterally, suggesting paroxysmal/epileptiform tendencies in 
this region. Magnetic resonance imaging (MRI) showed cortical 
and corpus callosum atrophy with mild optic nerve and chiasma 
atrophy but no other significant abnormalities.

He was started on an IRNA protocol consisting of daily three-
hour sessions of: 

(i)	 Two hours of intensive physical therapy according to the 
main protocol with exercises organized into modules of 
three minutes each of five essential exercises (abdominal, 
floor rolling, back exercises, sitting, crawling); and 

(ii)	 One hour of medical therapy consisting of magnetic 
stimulation and nutraceutical injections. He was 
prescribed Focus Complex, vinpocetine, and NeuroPS 
orally to be taken at home. 

He attended therapy daily on weekdays for four years. After this 
time, his outcome measures had improved: his GMFM-88 score 
was 82% (from 59%), his speech impairment was 3 (from 0), and 
his cognitive impairment was 3 (from 1). His IQ had improved to 
37. Subjectively, his performance had improved from only being 
able to say individual words like “mummy” and “daddy” to having 
context-dependent conversations with a limited vocabulary. For 
example, in response to being asked “Are you hungry”, he could 
now reply “Mummy, I am, but would rather have a steak instead of 
this muffin”. Post-therapy he was able to floor roll, flex his hips and 
knees to pull himself into the sitting position, and crawl. Although 
he remained unable to stand independently, he could stand for up 
to one minute and walk for short distances assisted. He remained 
hypertonic but to a lesser degree (1/5).

His post-therapy EEG was essentially normal with basal 
cerebral activity in the alpha range (14-20 Hz) and only rare slow 
waves. No EEG abnormalities were noted with photic stimulation 
and hyperventilation. His MRI was unchanged.

Discussion
Here we present the case of a 13-year-old boy with cerebral 

palsy (CP) causing severe motor, intellectual, and speech deficits to 
illustrate the efficacy of our novel Integrated Neurorehabilitation 
protocol (INRA). INRA is a multimodal integrative medicine 
approach that combines endogenous (physical therapy) and 
exogenous (magnetostimulation) practices on a background of 
a neurorehabilitative nutraceutical regimen to promote positive 
neuroplasticity. After four years of INRA therapy, the child showed 
excellent improvements in motor function, with a 23-percentage 
point increase in GMFM-88 score. Although subject to the patient, 
care giver, and therapist interpretation, a gain of 5 to 7 GMFM 
percentage points is regarded as a “medium” positive change 
according to validation data [51]; a 23-percentage point increase 
may, therefore, reasonably be regarded as excellent. Furthermore, 
objective measures of speech and cognitive impairment improved 
markedly from very severe or severe impairment to moderate 
impairment after therapy. There was also a slight increase in his 
IQ and a decrease in epileptiform activity on EEG.

It is well accepted that the clinical management of CP requires 

http://dx.doi.org/10.15406/jnsk.2016.04.00137
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a multidisciplinary approach [5] with rehabilitative, medical, 
and team-based approaches that address the main deficits 
faced by children with CP: motor, tone, cognitive, seizure-
related, psychosocial, and oromotor. Since most (if not all) 
of the these deficits may be addressed by capitalizing on the 
growing realization that the brain is plastic throughout life, here 
we adopt practices that promote positive neuroplasticity and 
synaptogenesis to produce a positive impact on the rehabilitation 
of children with CP. INRA draws experience from both mainstream 
(physical therapy) and complementary (magnetostimulation and 
nutraceutical) approaches to promote positive neuroplasticity 
in a safe protocol that sits alongside standard CP treatments 
such as anti-epileptic medicines, anti-spasmodics, orthotics, and 
education and counseling. Indeed, the intensive application of 
the protocol over a sustained period of time, which it likely to be 
necessary to produce durable changes, allows the practitioner 
and their teams to monitor progress in real-time and respond to 
complications as they arise.

The INRA protocol adopts a triple approach to promoting 
neuroplasticity: endogenous stimulation of motor pathways 
(via physical/exercise therapy), exogenous stimulation of motor 
pathways (via magnetostimulation), and support of the neuronal 
microenvironment with nutraceuticals. Therapy is intensive and 
prolonged, consistent with other neurorestorative experiences in 
CP [5] and diseases such as adult stroke and traumatic brain injury 
[52] suggesting that intensive models of therapy achieve modest 
to strong effects compared to usual care [53]. However, there is a 
knowledge gap on the time course and underlying pathobiology 
of corticospinal development that is reflected in uncertainty 
over the optimal timing, dose, and duration of therapy in CP and 
the best application of stage-specific rehabilitation strategies. 
Nevertheless, given that INRA in the older child appears to be 
effective (as shown here), there is an expectation that earlier 
application in younger children may yield even more favorable 
results. This hypothesis requires testing in a formal clinical trial.

Here we have presented the basic INRA protocol. However, 
we expect the protocol to evolve as other complementary 
and integrative therapies gain an evidence base. For example, 
acupuncture has been tested in children with CP in a number of 
randomized clinical trials regarded of “moderate” quality both as 
an adjunct to conventional therapy and rehabilitation therapy and 
alone [21], and functional electrical stimulation (FES) has shown 
some efficacy in children with CP, although data are weak and 
sometimes conflicting [11]. Here we have focused on the basic 
protocol since it is easily applied in practice with only minimal 
investment required in terms of equipment or training of new 
expertise. Although initially designed for the CP setting, we would 
envisage that the principles of neurorestoration exploited by 
the protocol would be similarly effective in other acquired brain 
injuries. 

Conclusion
Here we present a novel intensive, integrated 

neurorehabilitative protocol, the INRA, which adopts a multimodal 
triple neurorestorative approach to promote neuroplasticity and 
synaptogenesis. We illustrate the protocol’s efficacy with a case 
report demonstrating excellent motor, cognitive, and speech 
progression in a child with severe CP. Further testing of the 
protocol is required in a prospective clinical trial.
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